数学书单

数学书单

Allen Hatcher
“Algebraic Topology”

Loring W. Tu
“An Introduction to Manifolds”

Haim Brezis
“Functional Analysis, Sobolev Spaces and Partial Differential Equations”

Morris Kline
“Mathematical Thought from Ancient to Modern Times Volumn 1”

Morris Kline
“Mathematical Thought from Ancient to Modern Times Volumn 2”

Morris Kline
“Mathematical Thought from Ancient to Modern Times Volumn 3”

Morris Kline
“Mathematical Thought from Ancient to Modern Times Volumn 4”

Lawrence C. Evans
“Partial Differential Equations Second Edition”

Brian C. Hall
“Quantum Theory for Mathematicians”

Bruce C. Berndt
“Ramanujan”s Notebooks Part I”

Bruce C. Berndt
“Ramanujan”s Notebooks Part II”

Bruce C. Berndt
“Ramanujan”s Notebooks Part III”

Bruce C. Berndt
“Ramanujan”s Notebooks Part IV”

Bruce C. Berndt
“Ramanujan”s Notebooks Part V”

I. S. Gradshteyn, I. M. Ryzhik
“Table of Integrals, Series, and Products Seventh Edition”

John W. Milnor
“Topology from the Differentiable Viewpoint”

Gaisi Takeuti, Wilson M. Zaring
(GTM 001) “Introduction to Axiomatic Set Theory”

John C. Oxtoby
(GTM 002) “Measure and Category: A Survey of the Analogies between Topological and Measure Spaces”

H.H. Schaefer, M.P. Wolff
(GTM 003) “Topological Vector Spaces”

Peter Hilton, Urs Stammbach
(GTM 004) “A Course in Homological Algebra”

Saunders Mac Lane
(GTM 005) “Categories for the Working Mathematician”

Daniel R. Hughes, Fred C. Piper
(GTM 006) “Projective Planes”

Jean-Pierre Serre
(GTM 007) “A Course in Arithmetic”

Gaisi Takeuti, Wilson M. Zaring
(GTM 008) “Axiomatic Set Theory”

James E. Humphreys
(GTM 009) “Introduction to Lie Algebras and Representation Theory”

Marshall M. Cohen
(GTM 010) “A Course in Simple-Homotopy Theory”

John B. Conway
(GTM 011) “Functions of One Complex Variable I”

Richard Beals
(GTM 012) “Advanced Mathematical Analysis”

Frank W. Anderson, Kent R. Fuller
(GTM 013) “Rings and Categories of Modules”

Martin Golubitsky, Victor Guillemin
(GTM 014) “Stable Mappings and Their Singularities”

Sterling K. Berberian
(GTM 015) “Lectures in Functional Analysis and Operator Theory”

David J. Winter
(GTM 016) “The Structure of Fields”

Murray Rosenblatt
(GTM 017) “Random Processes”

Paul R. Halmos
(GTM 018) “Measure Theory”

Paul R. Halmos
(GTM 019) “A Hilbert Space Problem Book”

Dale Husemoller
(GTM 020) “Fibre Bundles”

James E. Humphreys
(GTM 021) “Linear Algebraic Groups”

Donald W. Barnes, John M. Mack
(GTM 022) “An Algebraic Introduction to Mathematical Logic”

Werner H. Greub
(GTM 023) “Linear Algebra”

Richard B. Holmes
(GTM 024) “Geometric Functional Analysis and Its Applications”

Edwin Hewitt, Karl Stromberg
(GTM 025) “Real and Abstract Analysis”

Ernest G. Manes
(GTM 026) “Algebraic Theories”

John L. Kelley
(GTM 027) “General Topology”

Oscar Zariski, Pierre Samuel
(GTM 028) “Commutative Algebra I”

Oscar Zariski, Pierre Samuel
(GTM 029) “Commutative Algebra II”

Nathan Jacobson
(GTM 030) “Lectures in Abstract Algebra I: Basic Concepts”

Nathan Jacobson
(GTM 031) “Lectures in Abstract Algebra II: Linear Algebra”

Nathan Jacobson
(GTM 032) “Lectures in Abstract Algebra III: Theory of Fields and Galois Theory”

Morris W. Hirsch
(GTM 033) “Differential Topology”

Frank Spitzer
(GTM 034) “Principles of Random Walk”

Herbert Alexander, John Wermer
(GTM 035) “Several Complex Variables and Banach Algebras”

John L. Kelley, Isaac Namioka
(GTM 036) “Linear Topological Spaces”

J. Donald Monk
(GTM 037) “Mathematical Logic”

H. Grauert, K. Fritzsche
(GTM 038) “Several Complex Variables”

William Arveson
(GTM 039) “An Invitation to $C^$-Algebras”*

John G. Kemeny, J. Laurie Snell, Anthony W. Knapp, D.S. Griffeath
(GTM 040) “Denumerable Markov Chains”

Tom M. Apostol
(GTM 041) “Modular Functions and Dirichlet Series in Number Theory”

Jean-Pierre Serre, Leonhard L. Scott
(GTM 042) “Linear Representations of Finite Groups”

Leonard Gillman, Meyer Jerison
(GTM 043) “Rings of Continuous Functions”

Keith Kendig
(GTM 044) “Elementary Algebraic Geometry”

M. Loève
(GTM 045) “Probability Theory I”

M. Loève
(GTM 046) “Probability Theory II”

Edwin E. Moise
(GTM 047) “Geometric Topology in Dimensions 2 and 3”

R. K. Sachs, H. Wu
(GTM 048) “General Relativity for Mathematicians”

K. W. Gruenberg, A. J. Weir
(GTM 049) “Linear Geometry”

Harold M. Edwards
(GTM 050) “Fermat”s Last Theorem: A Genetic Introduction to Algebraic Number Theory”

William Klingenberg, D. Hoffman
(GTM 051) “A Course in Differential Geometry”

Robin Hartshorne
(GTM 052) “Algebraic Geometry”

Yu. I. Manin, Boris Zilber
(GTM 053) “A Course in Mathematical Logic for Mathematicians”

Mark E. Watkins, Jack E. Graver
(GTM 054) “Combinatorics with Emphasis on the Theory of Graphs”

Arlen Brown, Carl Pearcy
(GTM 055) “Introduction to Operator Theory I: Elements of Functional Analysis”

William S. Massey
(GTM 056) “Algebraic Topology: An Introduction”

Richard H. Crowell, Ralph H. Fox
(GTM 057) “Introduction to Knot Theory”

Neal Koblitz
(GTM 058) “p-adic Numbers, p-adic Analysis, and Zeta-Functions”

Serge Lang
(GTM 059) “Cyclotomic Fields”

V. I. Arnold, A. Weinstein, K. Vogtmann
(GTM 060) “Mathematical Methods of Classical Mechanics”

George W. Whitehead
(GTM 061) “Elements of Homotopy Theory”

M.I. Kargapolov, Ju.I. Merzljakov
(GTM 062) “Fundamentals of the Theory of Groups”

Béla Bollobás
(GTM 063) “Graph Theory: An Introductory Course”

R. E. Edwards
(GTM 064) “Fourier Series: A Modern Introduction Volume 1”

Raymond O. Wells, Jr.
(GTM 065) “Differential Analysis on Complex Manifolds”

William C. Waterhouse
(GTM 066) “Introduction to Affine Group Schemes”

Jean-Pierre Serre
(GTM 067) “Local Fields”

Joachim Weidmann
(GTM 068) “Linear Operators in Hilbert Spaces”

Serge Lang
(GTM 069) “Cyclotomic Fields II”

William S. Massey
(GTM 070) “Singular Homology Theory”

Herschel Farkas, Irwin Kra
(GTM 071) “Riemann Surfaces”

John Stillwell
(GTM 072) “Classical Topology and Combinatorial Group Theory”

Thomas W. Hungerford
(GTM 073) “Algebra”

Harold Davenport, Hugh Montgomery
(GTM 074) “Multiplicative Number Theory”

Gerhard P. Hochschild
(GTM 075) “Basic Theory of Algebraic Groups and Lie Algebras”

Shigeru Iitaka
(GTM 076) “Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties”

Erich Hecke
(GTM 077) “Lectures on the Theory of Algebraic Numbers”

Stanley Burris, H.P. Sankappanavar
(GTM 078) “A Course in Universal Algebra”

Peter Walters
(GTM 079) “An Introduction to Ergodic Theory”

Derek J.S. Robinson
(GTM 080) “A Course in the Theory of Groups”

Otto Forster
(GTM 081) “Lectures on Riemann Surfaces”

Raoul Bott, Loring W. Tu
(GTM 082) “Differential Forms in Algebraic Topology”

Lawrence C. Washington
(GTM 083) “Introduction to Cyclotomic Fields”

Kenneth Ireland, Michael Rosen
(GTM 084) “A Classical Introduction to Modern Number Theory”

R. E. Edwards
(GTM 085) “Fourier Series: A Modern Introduction Volume 2”

J.H. van Lint
(GTM 086) “Introduction to Coding Theory”

Kenneth S. Brown
(GTM 087) “Cohomology of Groups”

Richard S. Pierce
(GTM 088) “Associative Algebras”

Serge Lang
(GTM 089) “Introduction to Algebraic and Abelian Functions”

Arne Brøndsted
(GTM 090) “An Introduction to Convex Polytopes”

Alan F. Beardon
(GTM 091) “The Geometry of Discrete Groups”

Joseph Diestel
(GTM 092) “Sequences and Series in Banach Spaces”

B.A. Dubrovin, A.T. Fomenko, S.P. Novikov
(GTM 093) “Modern Geometry — Methods and Applications Part I: The Geometry of Surfaces”

Frank W. Warner
(GTM 094) “Foundations of Differentiable Manifolds and Lie Groups”

Albert N. Shiryaev
(GTM 095) “Probability-1”, “ Probability-2”

John B. Conway
(GTM 096) “A Course in Functional Analysis”

Neal I. Koblitz
(GTM 097) “Introduction to Elliptic Curves and Modular Forms”

Theodor Bröcker, Tammo tom Dieck
(GTM 098) “Representations of Compact Lie Groups”

L.C. Grove, C.T. Benson
(GTM 099) “Finite Reflection Groups”

Christian Berg, Jens Peter Reus Christensen, Paul Ressel
(GTM 100) “Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions”

Harold M. Edwards
(GTM 101) “Galois Theory”

V. S. Varadarajan
(GTM 102) “Lie Groups, Lie Algebras, and Their Representations”

Serge Lang
(GTM 103) “Complex Analysis”

B.A. Dubrovin, A.T. Fomenko, S.P. Novikov
(GTM 104) “Modern Geometry — Methods and Applications Part II: The Geometry and Topology of Manifolds”

Serge Lang
(GTM 105) “$SL_2(\mathbb{R})$”

Joseph H. Silverman
(GTM 106) “The Arithmetic of Elliptic Curves”

Peter J. Olver
(GTM 107) “Applications of Lie Groups to Differential Equations”

R. Michael Range
(GTM 108) “Holomorphic Functions and Integral Representations in Several Complex Variables”

Olli Lehto
(GTM 109) “Univalent Functions and Teichmüller Spaces”

Serge Lang
(GTM 110) “Algebraic Number Theory”

Dale Husemöller
(GTM 111) “Elliptic Curves”

Serge Lang
(GTM 112) “Elliptic Functions”

Ioannis Karatzas, Steven Shreve
(GTM 113) “Brownian Motion and Stochastic Calculus”

Neal Koblitz
(GTM 114) “A Course in Number Theory and Cryptography”

Marcel Berger, Bernard Gostiaux
(GTM 115) “Differential Geometry: Manifolds, Curves and Surfaces”

John L. Kelley, T.P. Srinivasan
(GTM 116) “Measure and Integral: Volume 1”

Jean-Pierre Serre
(GTM 117) “Algebraic Groups and Class Fields”

Gert K. Pedersen
(GTM 118) “Analysis Now”

Joseph J. Rotman
(GTM 119) “An Introduction to Algebraic Topology”

William P. Ziemer
(GTM 120) “Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation”

Serge Lang
(GTM 121) “Cyclotomic Fields I and II”

Reinhold Remmert
(GTM 122) “Theory of Complex Functions”

H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert
(GTM 123) “Numbers”

B.A. Dubrovin, A.T. Fomenko, S.P. Novikov
(GTM 124) “Modern Geometry — Methods and Applications Part III: Introduction to Homology Theory”

Carlos A. Berenstein, Roger Gay
(GTM 125) “Complex Variables: An Introduction”

Armand Borel
(GTM 126) “Linear Algebraic Groups”

William S. Massey
(GTM 127) “A Basic Course in Algebraic Topology”

Jeffrey Rauch
(GTM 128) “Partial Differential Equations”

William Fulton, Joe Harris
(GTM 129) “Representation Theory: A First Course”

C.T.J. Dodson, T. Poston
(GTM 130) “Tensor Geometry: The Geometric Viewpoint and its Uses”

T.Y. Lam
(GTM 131) “A First Course in Noncommutative Rings”

Alan F. Beardon
(GTM 132) “Iteration of Rational Functions: Complex Analytic Dynamical Systems”

Joe Harris
(GTM 133) “Algebraic Geometry”

Steven Roman
(GTM 134) “Coding and Information Theory”

Steven Roman
(GTM 135) “Advanced Linear Algebra”

William Adkins, Steven Weintraub
(GTM 136) “Algebra: An Approach via Module Theory”

Sheldon Axler, Paul Bourdon, Wade Ramey
(GTM 137) “Harmonic Function Theory”

Henri Cohen
(GTM 138) “A Course in Computational Algebraic Number Theory”

Glen E. Bredon
(GTM 139) “Topology and Geometry”

Jean-Pierre Aubin
(GTM 140) “Optima and Equilibria”

Thomas Becker, Volker Weispfenning
(GTM 141) “Gröbner Bases: A Computational Approach to Commutative Algebra”

Serge Lang
(GTM 142) “Real and Functional Analysis”

J.L. Doob
(GTM 143) “Measure Theory”

Benson Farb, R. Keith Dennis
(GTM 144) “Noncommutative Algebra”

James W. Vick
(GTM 145) “Homology Theory: An Introduction to Algebraic Topology”

Douglas S. Bridges
(GTM 146) “Computability: A Mathematical Sketchbook”

Jonathan Rosenberg
(GTM 147) “Algebraic K-Theory and Its Applications”

Joseph J. Rotman
(GTM 148) “An Introduction to the Theory of Groups”

John G. Ratcliffe
(GTM 149) “Foundations of Hyperbolic Manifolds”

David Eisenbud
(GTM 150) “Commutative Algebra: with a View Toward Algebraic Geometry”

Joseph H. Silverman
(GTM 151) “Advanced Topics in the Arithmetic of Elliptic Curves”

Günter M. Ziegler
(GTM 152) “Lectures on Polytopes”

William Fulton
(GTM 153) “Algebraic Topology: A First Course”

Arlen Brown, Carl Pearcy
(GTM 154) “An Introduction to Analysis”

Christian Kassel
(GTM 155) “Quantum Groups”

Alexander S. Kechris
(GTM 156) “Classical Descriptive Set Theory”

Paul Malliavin
(GTM 157) “Integration and Probability”

Steven Roman
(GTM 158) “Field Theory”

John B. Conway
(GTM 159) “Functions of One Complex Variable II”

Serge Lang
(GTM 160) “Differential and Riemannian Manifolds”

Peter Borwein, Tamas Erdelyi
(GTM 161) “Polynomials and Polynomial Inequalities”

J.L. Alperin, Rowen B. Bell
(GTM 162) “Groups and Representations”

John D. Dixon, Brian Mortimer
(GTM 163) “Permutation Groups”

Melvyn B. Nathanson
(GTM 164) “Additive Number Theory: The Classical Bases”

Melvyn B. Nathanson
(GTM 165) “Additive Number Theory: Inverse Problems and the Geometry of Sumsets”

R.W. Sharpe
(GTM 166) “Differential Geometry: Cartan”s Generalization of Klein”s Erlangen Program”

Patrick Morandi
(GTM 167) “Field and Galois Theory”

Guenter Ewald
(GTM 168) “Combinatorial Convexity and Algebraic Geometry”

Rajendra Bhatia
(GTM 169) “Matrix Analysis”

Glen E. Bredon
(GTM 170) “Sheaf Theory”

Peter Petersen
(GTM 171) “Riemannian Geometry”

Reinhold Remmert
(GTM 172) “Classical Topics in Complex Function Theory”

Reinhard Diestel
(GTM 173) “Graph Theory”

Douglas S. Bridges
(GTM 174) “Foundations of Real and Abstract Analysis”

W.B. Raymond Lickorish
(GTM 175) “An Introduction to Knot Theory”

John M. Lee
(GTM 176) “Introduction to Riemannian Manifolds”

Donald J. Newman
(GTM 177) “Analytic Number Theory”

F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P.R. Wolenski
(GTM 178) “Nonsmooth Analysis and Control Theory”

Ronald G. Douglas
(GTM 179) “Banach Algebra Techniques in Operator Theory”

S.M. Srivastava
(GTM 180) “A Course on Borel Sets”

Rainer Kress
(GTM 181) “Numerical Analysis”

Wolfgang Walter
(GTM 182) “Ordinary Differential Equations”

Robert E. Megginson
(GTM 183) “An Introduction to Banach Space Theory”

Béla Bollobás
(GTM 184) “Modern Graph Theory”

David A. Cox, John Little, Donal O’Shea
(GTM 185) “Using Algebraic Geometry”

Dinakar Ramakrishnan, Robert J. Valenza
(GTM 186) “Fourier Analysis on Number Fields”

Joe Harris, Ian Morrison
(GTM 187) “Moduli of Curves”

Robert Goldblatt
(GTM 188) “Lectures on the Hyperreals: An Introduction to Nonstandard Analysis”

T. Y. Lam
(GTM 189) “Lectures on Modules and Rings”

M. Ram Murty, Jody Esmonde
(GTM 190) “Problems in Algebraic Number Theory”

Serge Lang
(GTM 191) “Fundamentals of Differential Geometry”

Francis Hirsch, Gilles Lacombe
(GTM 192) “Elements of Functional Analysis”

Henri Cohen
(GTM 193) “Advanced Topics in Computational Number Theory”

Klaus-Jochen Engel, Rainer Nagel
(GTM 194) “One-Parameter Semigroups for Linear Evolution Equations”

Melvyn B. Nathanson
(GTM 195) “Elementary Methods in Number Theory”

M. Scott Osborne
(GTM 196) “Basic Homological Algebra”

David Eisenbud, Joe Harris
(GTM 197) “The Geometry of Schemes”

Alain M. Robert
(GTM 198) “A Course in p-adic Analysis”

Hakan Hedenmalm, Boris Korenblum, Kehe Zhu
(GTM 199) “Theory of Bergman Spaces”

D. Bao, S.-S. Chern, Z. Shen
(GTM 200) “An Introduction to Riemann-Finsler Geometry”

Marc Hindry, Joseph H. Silverman
(GTM 201) “Diophantine Geometry”

John M. Lee
(GTM 202) “Introduction to Topological Manifolds”

Bruce E. Sagan
(GTM 203) “The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions”

Jean-Pierre Escofier
(GTM 204) “Galois Theory”

Yves Félix, Stephen Halperin, Jean-Claude Thomas
(GTM 205) “Rational Homotopy Theory”

M. Ram Murty
(GTM 206) “Problems in Analytic Number Theory”

Chris Godsil, Gordon Royle
(GTM 207) “Algebraic Graph Theory”

Ward Cheney
(GTM 208) “Analysis for Applied Mathematics”

William Arveson
(GTM 209) “A Short Course on Spectral Theory”

Michael Rosen
(GTM 210) “Number Theory in Function Fields”

Serge Lang
(GTM 211) “Algebra”

Jiří Matoušek
(GTM 212) “Lectures on Discrete Geometry”

Klaus Fritzsche, Hans Grauert
(GTM 213) “From Holomorphic Functions to Complex Manifolds”

Jürgen Jost
(GTM 214) “Partial Differential Equations”

David M. Goldschmidt
(GTM 215) “Algebraic Functions and Projective Curves”

Denis Serre
(GTM 216) “Matrices: Theory and Applications”

David Marker
(GTM 217) “Model Theory: An Introduction”

John M. Lee
(GTM 218) “Introduction to Smooth Manifolds”

Colin Maclachlan, Alan W. Reid
(GTM 219) “The Arithmetic of Hyperbolic 3-Manifolds”

Jet Nestruev
(GTM 220) “Smooth Manifolds and Observables”

Branko Grünbaum
(GTM 221) “Convex Polytopes”

Brian C. Hall
(GTM 222) “Lie Groups, Lie Algebras, and Representations: An Elementary Introduction”

Anders Vretblad
(GTM 223) “Fourier Analysis and its Applications”

Gerard Walschap
(GTM 224) “Metric Structures in Differential Geometry”

Daniel Bump
(GTM 225) “Lie Groups”

Kehe Zhu
(GTM 226) “Spaces of Holomorphic Functions in the Unit Ball”

Ezra Miller, Bernd Sturmfels
(GTM 227) “Combinatorial Commutative Algebra”

Fred Diamond, Jerry Shurman
(GTM 228) “A First Course in Modular Forms”

David Eisenbud
(GTM 229) “The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra”

Daniel W. Stroock
(GTM 230) “An Introduction to Markov Processes”

Anders Björner, Francisco Brenti
(GTM 231) “Combinatorics of Coxeter Groups”

Graham Everest, Thomas Ward
(GTM 232) “An Introduction to Number Theory”

Fernando Albiac, Nigel J. Kalton
(GTM 233) “Topics in Banach Space Theory”

Palle E.T. Jorgensen
(GTM 234) “Analysis and Probability: Wavelets, Signals, Fractals”

Mark R. Sepanski
(GTM 235) “Compact Lie Groups”

John B. Garnett
(GTM 236) “Bounded Analytic Functions”

Rubén A. Martínez-Avendaño, Peter Rosenthal
(GTM 237) “An Introduction to Operators on the Hardy-Hilbert Space”

Martin Aigner
(GTM 238) “A Course in Enumeration”

Henri Cohen
(GTM 239) “Number Theory — Volume I: Tools and Diophantine Equations”

Henri Cohen
(GTM 240) “Number Theory — Volume II: Analytic and Modern Tools”

Joseph H. Silverman
(GTM 241) “The Arithmetic of Dynamical Systems”

Pierre Antoine Grillet
(GTM 242) “Abstract Algebra”

Ross Geoghegan
(GTM 243) “Topological Methods in Group Theory”

J.A. Bondy, U.S.R. Murty
(GTM 244) “Graph Theory”

Rubí E. Rodríguez, Irwin Kra, Jane P. Gilman
(GTM 245) “Complex Analysis: In the Spirit of Lipman Bers”

Eberhard Kaniuth
(GTM 246) “A Course in Commutative Banach Algebras”

Christian Kassel, Vladimir Turaev
(GTM 247) “Braid Groups”

Peter Abramenko, Kenneth S. Brown
(GTM 248) “Buildings Theory and Applications”

Loukas Grafakos
(GTM 249) “Classical Fourier Analysis”

Loukas Grafakos
(GTM 250) “Modern Fourier Analysis”

Robert A. Wilson
(GTM 251) “The Finite Simple Groups”

Gerd Grubb
(GTM 252) “Distributions and Operators”

Barbara D. MacCluer
(GTM 253) “Elementary Functional Analysis”

Henning Stichtenoth
(GTM 254) “Algebraic Function Fields and Codes”

Roe Goodman, Nolan R. Wallach
(GTM 255) “Symmetry, Representations, and Invariants”

Gregor Kemper
(GTM 256) “A Course in Commutative Algebra”

Robin Hartshorne
(GTM 257) “Deformation Theory”

Osman Guler
(GTM 258) “Foundations of Optimization in Finite Dimensions”

Manfred Einsiedler, Thomas Ward
(GTM 259) “Ergodic Theory: with a view towards Number Theory”

Jürgen Herzog, Hibi Takayuki
(GTM 260) “Monomial Ideals”

Erhan Cinlar
(GTM 261) “Probability and Stochastics”

Daniel W. Stroock
(GTM 262) “Essentials of Integration Theory for Analysis”

Kehe Zhu
(GTM 263) “Analysis on Fock Spaces”

Francis H. Clarke
(GTM 264) “Functional Analysis, Calculus of Variations and Optimal Control”

Konrad Schmüdgen
(GTM 265) “Unbounded Self-adjoint Operators on Hilbert Space”

Jean-Paul Penot
(GTM 266) “Calculus Without Derivatives”

Brian C. Hall
(GTM 267) “Quantum Theory for Mathematicians”

Steven G. Krantz
(GTM 268) “Geometric Analysis of the Bergman Kernel and Metric”

M. Scott Osborne
(GTM 269) “Locally Convex Spaces”

Steven Weintraub
(GTM 270) “Fundamentals of Algebraic Topology”

Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli
(GTM 271) “Integer Programming”

Tanja Eisner, Bálint Farkas, Markus Haase, Rainer Nagel
(GTM 272) “Operator Theoretic Aspects of Ergodic Theory”

Anatoly Fomenko, Dmitry Fuchs
(GTM 273) “Homotopical Topology”

Jean-François Le Gall
(GTM 274) “Brownian Motion, Martingales, and Stochastic Calculus”

Loring W. Tu
(GTM 275) “Differential Geometry: Connections, Curvature, and Characteristic Classes”

Manfred Einsiedler, Thomas Ward
(GTM 276) “Functional Analysis, Spectral Theory, and Applications”

Konrad Schmüdgen
(GTM 277) “The Moment Problem”

William P. Ziemer
(GTM 278) “Modern Real Analysis”

Jürgen Herzog, Takayuki Hibi, Hidefumi Ohsugi
(GTM 279) “Binomial Ideals”

Christopher Heil
(GTM 280) “Introduction to Real Analysis”

Laurenţiu G. Maxim
(GTM 281) “Intersection Homology & Perverse Sheaves with Applications to Singularities”

Sheldon Axler
(GTM 282) “Measure, Integration & Real Analysis”

Ibrahim Assem, Flávio U. Coelho
(GTM 283) “Basic Representation Theory of Algebras”

David Borthwick
(GTM 284) “Spectral Theory: Basic Concepts and Applications”

Konrad Schmüdgen
(GTM 285) “An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space”

Daniel Hug, Wolfgang Weil
(GTM 286) “Lectures on Convex Geometry”

Richard Beals, Roderick S. C. Wong
(GTM 287) “Explorations in Complex Functions”

John Voight
(GTM 288) “Quaternion Algebras”

Jane Hawkins
(GTM 289) “Ergodic Dynamics: From Basic Theory to Applications”

Omer Egecioglu, Adriano Garsia
(GTM 290) “Lessons in Enumerative Combinatorics”

Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas
(GTM 291) “Mathematical Logic”

Rabi Bhattacharya, Edward C. Waymire
(GTM 292) “Random Walk, Brownian Motion and Martingales”

Rabi Bhattacharya, Edward C. Waymire
(GTM 293) “Stationary Processes and Discrete Parameter Markov Processes”

Wolfgang Arendt, Karsten Urban
(GTM 294) “Partial Differential Equations”

Jean-François Le Gall
(GTM 295) “Measure Theory, Probability, and Stochastic Processes”

Mihran Papikian
(GTM 296) “Drinfeld Modules”

Steven P. Lalley
(GTM 297) “Random Walks on Infinite Groups”

Richard Beals, Roderick S. C. Wong
(GTM 298) “More Explorations in Complex Functions”

Rabi Bhattacharya, Edward C. Waymire
(GTM 299) “Continuous Parameter Markov Processes and Stochastic Differential Equations”

Jayce R. Getz, Heekyoung Hahn
(GTM 300) “An Introduction to Automorphic Representations”

David Marker
(GTM 301) “An Invitation to Mathematical Logic”

Loukas Grafakos
(GTM 302) “Fundamentals of Fourier Analysis”

张筑生
《数学分析新讲(重排本)(第一册)》

张筑生
《数学分析新讲(重排本)(第三册)》

张筑生
《数学分析新讲(重排本)(第二册)》

林源渠,方企勤
《数学分析解题指南》

刘浩洋,户将,李勇锋,文再文
《最优化:建模、算法与理论》

林源渠
《泛函分析学习指南》

张恭庆,林源渠
《泛函分析讲义(第二版)(上)》

龚昇
《简明复分析》

周民强
《调和分析讲义(实变方法)》

陈维桓,李兴校
《黎曼几何引论(上册)》

陈维桓,李兴校
《黎曼几何引论(下册)》


数学书单
http://example.com/数学书单/
作者
chenyiwu-bh
发布于
2024年7月18日
许可协议